Interrelations between random walks on diagrams (graphs) with and without cycles.
نویسنده
چکیده
Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.
منابع مشابه
Discrete-time random walks on diagrams (graphs) with cycles.
After a review of the diagram method for continuous-time random walks on graphs with cycles, the method is extended to discrete-time random walks. The basic theorems carry over formally from continuous time to discrete time. Three problems in tennis probabilities are used to illustrate random walks on discrete-time diagrams with cycles.
متن کاملInterlacings for Random Walks on Weighted Graphs and the Interchange Process
Abstract. We study Aldous’ conjecture that the spectral gap of the interchange process on a weighted undirected graph equals the spectral gap of the random walk on this graph. We present a conjecture in the form of an inequality, and prove that this inequality implies Aldous’ conjecture by combining an interlacing result for Laplacians of random walks on weighted graphs with representation theo...
متن کاملOn Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models
Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian, we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of q-step walks and q-step closed walks over the random graph. These sums can be considered as the d...
متن کاملMixing in Continuous Quantum Walks on Graphs
Classical random walks on well-behaved graphs are rapidly mixing towards the uniform distribution. Moore and Russell showed that a continuous quantum walk on the hypercube is instantaneously uniform mixing. We show that the continuous-time quantum walks on other well-behaved graphs do not exhibit this uniform mixing. We prove that the only graphs amongst balanced complete multipartite graphs th...
متن کاملNilpotent Adjacency Matrices and Random Graphs
While powers of the adjacency matrix of a finite graph reveal information about walks on the graph, they fail to distinguish closed walks from cycles. Using elements of an appropriate commutative, nilpotentgenerated algebra, a “new” adjacency matrix can be associated with a random graph on n vertices and |E| edges of nonzero probability. Letting Xk denote the number of k-cycles occurring in a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 85 9 شماره
صفحات -
تاریخ انتشار 1988